NF150AB15BM2T0KBI

Main characteristics:

- Nominal current measurement: from ±150A DC, AC
- Excellent linearity: 15 ppm
- High resolution
- Very low offset drift
- Overall accuracy at I_{PN} @ +25°C: ≤±0.1 %
- Wide frequency bandwidth up to 300 kHz (- 1 dB)
- ROHS Compliant

Features:

- DC, AC pulse currents' measurements with galvanic isolation
- Nano Crystal Fluxgate technology
- Electrostatic shield between primary and secondary circuit
- Bipolar Power supply ±15 Volt
- Operating temperature range from -20 to +85°C
- Wire Connector Type
- Current output
- Really quick response time (<300 ns)

Standard compliance:

- Typical applications:
- Feedback element in precision current regulated devices (power supplies...)
- Precise and high stability inverters
- Medical equipment
- Energy measurement
- Power analyzers

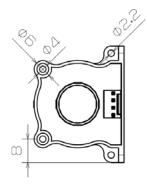
Remarks:

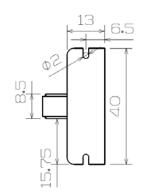
- Current overload capability
- Additional output indicating the transducer state

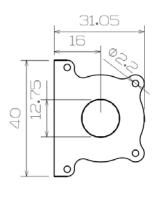
Specification

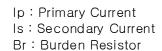
	1	
Nominal primary current (I _{PN})	±150	A r.m.s.
Measuring range @ ±15V (±5%)	±200	A peak
Max. measuring resistance @ I _P max & ±15V (±5%)	40	Ω
Min. measuring resistance @ I _{PN} & ±15V (±5%)	0.1	Ω
Turn number	2000	Turn
Secondary current at I _{PN}	150/2000	А
Accuracy at I _{PN} @ +25°C	≤±0.1	%
Accuracy at I _{PN} @ -5 ~ +85°C	≤±0.2	%
Accuracy at I _{PN} @ -20 ~ +85°C	≤±0.5	%
Offset current @ +25°C	≤±100	uA
Linearity	≤±0.05	%
Thermal drift coefficient @ -5 ~ +85°C	≤2	uA/°C
Thermal drift coefficient @ -20 ~ +85°C	≤5	uA/°C
Delay time	≤0.5	us
di/dt correctly followed	≤60	A/us
Bandwidth @ -1dB	≤300	kHz
Max. no-load consumption current @ ±15V (±5%)	≤20	mA
Secondary resistance @ +85°C	≤100	Ω
Dielectric strength Primary/Secondary @ 50Hz, 1min	3	kV
Supply voltage @ ±20%	±15V	V dc
Voltage drop	≤3	V
Mass	0.039	kg
Operating temperature	-20 ~ +85	°C
Storage temperature	-25 ~ +125	°C
	-	

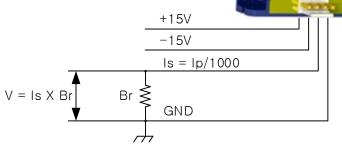
General data


- Plastic case and insulating resin are self-extinguishing.
- Fixing holes in the case molding for two positions at right angles
- Direction of the current: A primary current flowing in the direction of the arrow results in a positive secondary output current from terminal C_{OUT} . 2/3 –


Dimensions







Installation

Connector Specification

Molex

PCB Ass'y: 5045-04 Housing: 5051-04

Terminal: 5159

* The positive direction of the current from the front to the rear of the head (the front of the contactor).

(Secondary_Resistance + Measuring_Resistance) x Max_Secondary_Current + 1V = 15V Measuring_Resistance = (15 - 1) / Max_Secondary_Current - Secondary_Resistance Therefore, Meauring_Resistance = $14/(200/2000) - 100 = 40 \Omega$

Caution

Be careful not to operate under 0.1Ω burden resistor. The current sensor is damaged.