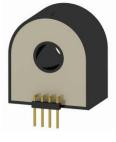
>>> NF100AU05AP1T5KBI

NF100AU05AP1T5KBI

Main characteristics:

- Nominal current measurement: from ±100A DC, AC
- Excellent linearity: 15 ppm
- High resolution
- Very low offset drift
- Overall accuracy at I_{PN} @ +25°C: $\leq \pm 0.1$ %
- Wide frequency bandwidth up to 300 kHz (- 1 dB)
- ROHS Compliant

Features:


- DC, AC pulse currents' measurements with galvanic isolation
- Nano Crystal Fluxgate technology
- Electrostatic shield between primary and secondary circuit
- Single Power supply +5 Volt
- Operating temperature range from -20 to +85°C
- Wire Connector Type
- Current output
- Really quick response time (<300 ns)

Standard compliance:

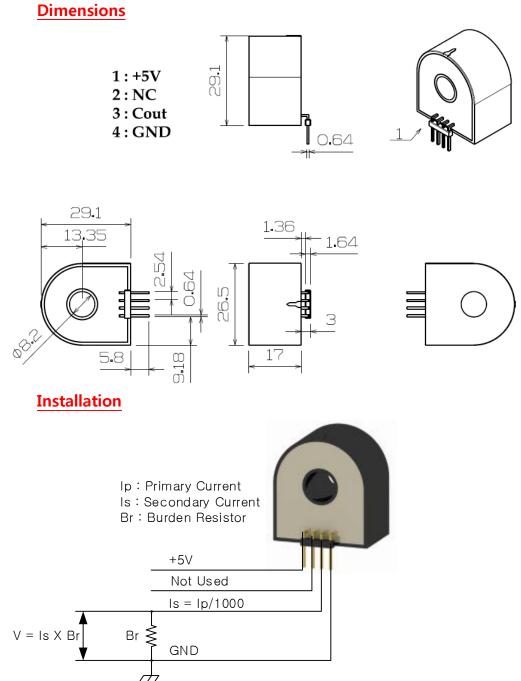
- Typical applications:
- Feedback element in precision current regulated devices (power supplies...)
- Precise and high stability inverters
- Medical equipment
- Energy measurement
- Power analyzers

Remarks:

- Current overload capability
- Additional output indicating the transducer state

- 1/3 -

>>> HISEN TECH


Specification

Nominal primary current (I _{PN})	±100	A r.m.s.
Measuring range @ +5V (±5%)	±150	A peak
Max. measuring resistance @ I_{P} max & +5V $_{(\pm5\%)}$	3	Ω
Min. measuring resistance @ I_{PN} & +5V (±5%)	1	Ω
Turn number	1500	turn
Secondary current at I _{PN}	100/1500	А
Accuracy at I _{PN} @ +25°C	≤±0.1	%
Accuracy at I _{PN} @ -5 ~ +85°C	≤±0.2	%
Accuracy at I _{PN} @ -20 ~ +85°C	≤±0.5	%
Offset current @ +25°C	≤±100	uA
Linearity	≤±0.05	%
Thermal drift coefficient @ -5 ~ +85°C	≤2	uA/°C
Thermal drift coefficient @ -20 ~ +85°C	≤5	uA/°C
Delay time	≤0.5	us
di/dt correctly followed	≤60	A/us
Bandwidth @ -1dB	≤300	kHz
Max. no-load consumption current @ +5V (±5%)	≤20	mA
Secondary resistance @ +85°C	≤35	Ω
Dielectric strength Primary/Secondary @ 50Hz, 1min	3	kV
Supply voltage @ ±5%	+5	V dc
Voltage drop	≤0.5	V
Mass	0.019	kg
Operating temperature	-20 ~ +85	°C
Storage temperature	-25 ~ +125	°C

General data

- Plastic case and insulating resin are self-extinguishing.
- Fixing holes in the case molding for two positions at right angles
- Direction of the current: A primary current flowing in the direction of the arrow results in a positive secondary output current from terminal C_{OUT} . - 2/3 –

>>> NF100AU05AP1T5KBI

* The positive direction of the current from the front to the rear of the head (the front of the contactor).

(Secondary_Resistance + Measuring_Resistance) x Max_Secondary_Current + 1V = 4.8VMeasuring_Resistance = (4.8 - 1) / Max_Secondary_Current - Secondary_Resistance Therefore, Meauring_Resistance = $3.8/(150/1500) - 35 = 3 \Omega$

Caution

Be careful not to exceed 5.5V. The current sensor is damaged.

- 3/3 -

>>> HISEN TECH